

Features

- Hybrid 6-pin package
- 1500Vdc isolation voltage
- CMR transient immunity >1000V/us
- Small package outline
- High reliability and rugged construction
- High reliability screening available
- DC input with on/off threshold hysteresis output
- Fast switching times: tr, tf = 10ns typical
- Operating temperature range -55℃ to +125℃

Applications

- Switch mode power supplies
- Computer peripheral interface
- Motor control
- Ground signal isolation

Description

The IBI600 consists of an integrated high-speed detector optically coupled to an AlGaAs infrared-emitting diode in a leadless hybrid surface mount package.

Schematic Diagram

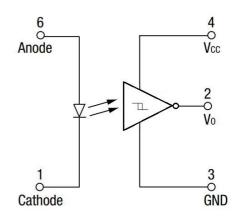


Figure 1. IBI600 Schematic Diagram

Package Dimensions in inches (mm)

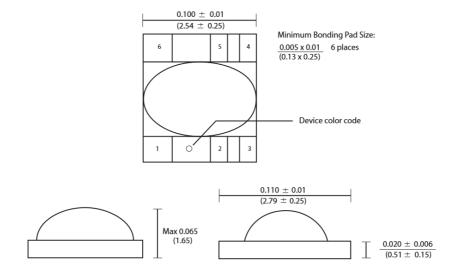


Figure 2. IBI600 Package Dimensions

Absolute Maximum Rating at 25°C (Note 1)

Symbol	Parameters	Ratings	Units	Notes
VDC	Isolation voltage	-1500 to +1500	V	2
Topr	Operating temperature	-55 to +125	°C	
Тѕтс	Storage temperature	-65 to +150	°C	
Tsol	Soldering temperature (10 seconds maximum)	240	°C	
PD	Total power dissipation	250		3
Emitter				
I _{DD}	Average input current	20	mA	
V_R	Reverse voltage	5	V	
PD	Power Dissipation	36	mW	3
Detector				
Vcc	Supply voltage	18	V	
Vouт	Output voltage	18	V	
Іоит	Peak output current	40	mA	

Notes

ESD Precaution

Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

^{1.} When using this product, please observe the absolute maximum ratings. Only one parameter may be set at the limit to ensure no damage to the device. Exceeding any of the limits listed here may damage the device.

^{2.} Measured between input pins 1 and 6 shorted together, and output pins 2, 3, 4, and 5 shorted together. T_A = 25°C and duration = 1sec.

^{3.} Linear derating factor: 3.0 mW/°C above 25°C

Electrical Characteristics $T_A = -55\%$ to +125% (unless otherwise specified) (Note 1)

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
VF	Forward Voltage	I _F =10mA	-	1.6	2.4	V	
I_R	Reverse Current	V _R = 3V	-	-	10	μΑ	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
I _{F(ON)}	Threshold Current, ON	V_{CC} = 15 V , R_L = 680Ω	-	-	10	mA	
I _{F(OFF)} / I _{F(ON)}	Hysteresis Ratio	V_{CC} = 15 V , R_L = 680Ω	-	0.8	-	-	
VoL	Low Level Output Voltage	$V_{CC}=15V, R_{L}=680\Omega, I_{F}=5mA$	5	-	-	V	
Іон	High Level Output Current	Vcc=Vo=15V, I _F =0mA			250	μA	
Іссн	High Level Supply Current	Vcc=15V, I _F =0mA	-	9	15	mA	
IccL	Low Level Supply Current	V _{CC} =15V, I _F = 10mA	-	9	15	mA	

Common Mode Transient Immunity

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
СМн	Logic High	V _{CM} = 300V peak, R _L = 680Ω, I _F =0mA, V _{CC} = 15V, T _A =25°C	1000	>10,000	-	V/µs	
CML	Logic Low	V _{CM} = 300V peak, R _L = 680Ω, I _F =5mA, V _{CC} = 15V, T _A =25°C	1000	>10,000	-	V/µs	
l _{l_0}	Output Leakage Current	V _L o= 1500V _{DC} , R _H ≤50%,T _A =25°C	-	-	1.0	μΑ	2

Switching Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
t _{PHL}	Logic High to Low	I_{F} = 5mA, V_{CC} = 15V, R_{L} = 680 Ω , T_{A} =25°C	-	-	300		3
t PLH	Logic Low to High		-	-	300		3
t _r	Rise Time		-	10	-	ns	
t _f	Fall Time		-	10	-		

Notes

- 1. Performance guaranteed only under conditions listed in above tables.
- 2. Measured between input pins 1 and 6 shorted together, and output pins 2, 3, 4, and 5 shorted together. T_A = 25°C and duration = 1sec.
- 3. A ceramic bypass capacitor $(0.01\mu F \text{ to } 0.1\mu F)$ between pins 3 and 5 is required to stabilize the operation of the amplifier.

Typical Characteristic Curves

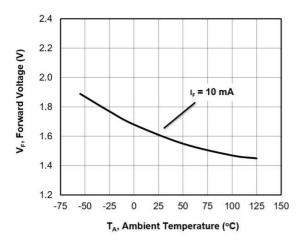


Figure 3. Forward Voltage vs Temperature

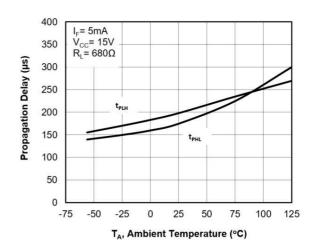
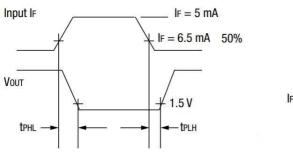



Figure 4. Propagation Delay vs Temperature

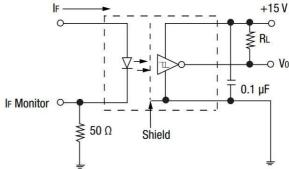


Figure 5. IBI600 Switching Test Circuit

IBI600

Ordering Information

Manufacturing Part Number	Part Description
IBI600	Miniature High-Speed Schmitt Trigger 6-pin Hybrid Package

DISCLAIMER

Isobaud Inc. reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Isobaud Inc. does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.